KMP算法
KMP主要应用在字符串匹配上。
KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。
KMP算法的时间复杂度为O(n + m),其中n为文本长度,m为模式串长度。由于KMP算法避免了大量无谓的字符比较,因此在某些情况下,其效率明显高于朴素的字符串匹配算法。
创建next前缀表
def build_pmt(pattern):
m = len(pattern)
pmt = [0] * m
j = 0
for i in range(1, m):
while j > 0 and pattern[i] != pattern[j]:
j = pmt[j - 1]
if pattern[i] == pattern[j]:
j += 1
pmt[i] = j
return pmt
28. 找出字符串中第一个匹配项的下标
class Solution:
def getNext(self, next: List[int], s: str) -> None:
j = 0
next[0] = 0
for i in range(1, len(s)):
while j > 0 and s[i] != s[j]:
j = next[j - 1]
if s[i] == s[j]:
j += 1
next[i] = j
def strStr(self, haystack: str, needle: str) -> int:
if len(needle) == 0:
return 0
next = [0] * len(needle)
self.getNext(next, needle)
j = 0
for i in range(len(haystack)):
while j > 0 and haystack[i] != needle[j]:
j = next[j - 1]
if haystack[i] == needle[j]:
j += 1
if j == len(needle):
return i - len(needle) + 1
return -1
459. 重复的子字符串
class Solution:
def repeatedSubstringPattern(self, s: str) -> bool:
if len(s) == 0:
return False
nxt = [0] * len(s)
self.getNext(nxt, s)
if nxt[-1] != 0 and len(s) % (len(s) - nxt[-1]) == 0:
return True
return False
def getNext(self, nxt, s):
nxt[0] = 0
j = 0
for i in range(1, len(s)):
while j > 0 and s[i] != s[j]:
j = nxt[j - 1]
if s[i] == s[j]:
j += 1
nxt[i] = j
return nxt